Sensing of micropillars by osteoblasts involves complex intracellular signaling
نویسندگان
چکیده
Topographical material surface features are sensed by cells and provoke a large range of cellular responses. We recognized earlier, that at micropillar topographies in the range of 5 µm, the osteoblasts attempt to phagocytize the pillars resulted in increased energy requirements and reduced osteoblast marker expression, e.g., collagen type I and osteocalcin. However, the precise cellular signaling transducing the topographic information into the cell and evoking phagocytic processes remained unknown. Here, we could show that the RhoA/ROCK signaling is involved in the transduction of the topography-mediated cellular reactions. After inhibition of ROCK-2 with Y27632 for 24 h, no caveolae-mediated micropillar assembly of the cell membrane domain component caveolin-1 (Cav-1) was found. ROCK inhibition was also able to attenuate the pillar-induced decrease in β-actin. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibition with LY294002 for 24 h did not influence the Cav-1 clustering on micropillars. Our results illustrate the importance of the integrin down-stream signaling of RhoA/ROCK in the recognition of and adaption to surface microtopographies by osteoblasts and extend our understanding about the complex mechanism of action inside the cells.
منابع مشابه
Gene co-expression network analysis identifies BRCC3 as a key regulator in osteogenic differentiation of osteoblasts through a β-catenin signaling dependent pathway
Objective(s): The prognosis of osteoporosis is very poor, and it is very important to identify a biomarker for prevention of osteoporosis. In this study, we aimed to identify candidate markers in osteoporosis and to investigate the role of candidate markers in osteogenic differentiation. Materials and Methods: Using Weighted Gene Co-Expression Network analysis, we identified three hub genes mig...
متن کاملPolycystin-1 Mediates Mechanical Strain-Induced Osteoblastic Mechanoresponses via Potentiation of Intracellular Calcium and Akt/β-Catenin Pathway
Mechanical regulation of bone formation involves a complex biophysical process, yet the underlying mechanisms remain poorly understood. Polycystin-1 (PC1) is postulated to function as a mechanosensory molecule mediating mechanical signal transduction in renal epithelial cells. To investigate the involvement of PC1 in mechanical strain-induced signaling cascades controlling osteogenesis, PKD1 ge...
متن کاملTriiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts
Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.Materials and Methods: The subchondral bone specimens were obtained from O...
متن کاملRestricted cell functions on micropillars are alleviated by surface-nanocoating with amino groups
The topographical and chemical surface features of biomaterials are sensed by the cells, affecting their physiology at the interface. When placed on titanium, we recently discovered osteoblasts attempted caveolae-mediated phagocytosis of the sharp-edged microstructures. This active, energy-consuming process resulted in decreased osteoblastic cell functions (e.g. secretion of extracellular matri...
متن کاملRegulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کامل